

Resistivity

The following equation shows that the resistance of a wire **R** is directly proportional to the length **L** of a wire and inversely proportional to the cross-sectional area **A** of the wire.

$$R = \frac{\rho L}{A}$$

As shown by the equation, knowing the length, cross-sectional area and the material that a wire is made of (and thus, its resistivity ρ) allows one to determine the resistance of the wire.

For a perfect cylindrical wire the cross sectional area is given by. $\pmb{A}=\pi r^2$

Using the data below, determine the **<u>resistivity</u>** of the conductor.

The Average diameter of the	Average resistance (Ω)	Length of conductor. (cm)
micrometre is 0.559mm	0.2	0
	0.6	10
You must:	0.9	20
	1.1	30
1. Plot a graph of the data.	1.3	40
	1.4	50
2. Use your graph to determine the resistivity of the conductor.	1.7	60
	1.9	70
	2.1	80
	2.2	90
	25	100

(Important) - this work is to be submitted to the head of physics at the start of term.

Assessment criteria

- A1 Produces a graph with appropriately labelled axes and with correct units
- A2 Produces a graph with sensible scales
- A3 Plots points accurately
- A4 Draws line of best fit (either a straight line or a smooth curve)
- A5 Comments on the trend/pattern obtained
- A6 Derives relation between two variables or determines constant
- A7 Discusses/uses related physics principles
- A8 Attempts to qualitatively consider sources of error