

Learning Cycle Year 1	Knowledge and Skills	Vocabulary & Reading	Checking of understanding	Rationale
Year 1 Autumn Term	Students will study Mechanics through the context of sports including sprinting, weight-lifting, rock-climbing and bungee jumping and be given the opportunity to collect and analyse data using a variety of methods. This is a good start in which to build upon their GCSE understanding of unit analysis, algebraic manipulation and the importance of Scientific Methodology.	Vocabulary and concepts encountered in the first half of the autumn term: Centre of Mass Conservation of Energy Conservation of Momentum Drag Efficiency Elastic Collision Equilibrium Force	Students will complete 3 assessed core practicals. All work to be recorded in a dedicated lab book. There will be 2 assessment windows for work covered in the Autumn term. These will consist of exam style question papers and carried out under exam	Many of the ideas and concepts encountered in this part of the course will be familiar to those students who have studied Physics at GCSE. Concepts such as force and energy are fundamental to the understanding of physics and students will revisit them in almost every part of this course. The content covered this term gives student ample opportunity to carry out practical work and build upon their existing skills of
	 Base quantities, derived quantities and their corresponding units. Equations of motion and vectors. Projectiles. Force, mass and acceleration. Kinetic and potential energy. Simple trigonometrical functions used to solve various problems in mechanics. 	Friction Potential Energy Inelastic Collision Kinetic Energy Vocabulary and concepts encountered in the Second half of the autumn term: Coherence Constructive Interference Emission Spectrum Excitation	conditions. There are Weekly assignments. There will be Quick fire Q&A sessions. There will be Card sorting activities. There will be Interactive white board activities.	investigation and data analysis. They will learn how to extract additional information from sets of measurements and use data logging as a method of acquiring large data sets. Practical activities are not just motivational and fun: they can also sharpen students' powers of observation, stimulate questions, and help develop new understanding and vocabulary.

	Later in the term students learn about the properties of different waves focusing on the sound produced by different musical instruments and the operation of a CD player. Students also continue to develop their investigation and ICT skills.	Frequency Fundamental Frequency In-Antiphase In-Phase Path Difference Period Phase Phase Difference		
	 In their Second half term students cover the following: Travelling and standing waves. The use of radians and degrees in analysing waves String and Pipe musical systems Path difference, Phase difference and superposition. Atomic energy levels and line spectra. Wave-particle duality Laser light and its application. 	Students will read the associated course text book and be sign posted to an assortment of online and other appropriately sourced reading material.		
Spring Term	The start of the Spring term gives students the opportunity to study the physics behind the production, testing and packaging of sweets/biscuits and confectionary. Other aspects of the food industry including food quality, safety and recycling and environmental effects will also be discussed.	Vocabulary and concepts encountered in the first half of the spring term: Archimedes' Principle Elastic Deformation Elastic Limit Hooke's Law Plastic Deformation Stoke's Law	Students will complete 2 assessed core practicals. All work to be recorded in a dedicated lab book. There will be 2 assessment windows for work covered in	As an experimental science this section of the course allows our students to learn much more about the calibration of instrumentation. They will be introduced to some new and important handling techniques and become more confident in using the Vernier scale and Micrometer screw gauge. No matter how hard we try to

г — т				
	In the first half of the spring term	Brittle materials	the Spring term.	control things, some level of
	students cover the following:	Ductile Materials	These will consist of	experimental error is
		Laminar Flow	exam style question	unavoidable. Throughout this
	 Methods for measuring Viscosity 	Turbulent Flow	papers and carried	spring term students will
	and fluid flow.	Viscosity	out under exam	become more confident in
	 The effects of concentration and 	Upthrust	conditions.	reporting their experimental
	temperature on fluid flow			results with an appropriate
	 Mechanical testing of products 	Vocabulary and	There are Weekly	uncertainty.
	 Reflection, Refraction and 	concepts encountered	assignments.	
	polarisation	in the Second half of the		
	 Using refractometry and 	spring term:	There will be Quick	
	polarimetry to monitor sugar		fire Q&A sessions.	
	concentration.	Electromotive Force		
		(EMF)	There will be Card	
	Later in the second term knowledge	Electron Flow	sorting activities.	
	is extended from previous topics to	Internal Resistance	9	
	show how Mathematical models are	Kirchhoff's First Law	There will be	
	developed to describe ohmic	Kirchhoff's Second Law	Interactive white	
	behaviours and the variation of	Ohm's Law	board activities	
	resistance with temperature. Simple	Potential Difference		
	conceptual models are used for the	Potential Divider		
	flow of charge in a circuit for the	Power		
	operation of a photocell and for the	Resistance		
	variation of resistance with	Circuit networks		
	temperature			
		Students will read the		
	In the second half in the spring term	associated course text		
	students cover the following:	back and basian posted		
	siddenis cover me tollowing.	to an assortment of		
	• DC circuite resistance current	apling and other		
	• De circuits, resistance, current,			
	enni, power.	appropriately sourced		
	KIICHHOTT'S LOWS	reaaing materiai.		
	 remperature and resistance. 			

	• Energy and temperature change.			
	 Intensity and efficiency 			
Summer	The summer term builds on earlier	Vocabulary and	Students will	In the final term, students will
Term	work about electrical circuits and	concepts encountered	complete 3 assessed	draw upon prior knowledge to
	shows students how Geophysics is	in the first half of the	core practicals. All	devise and carry out their own
	used for non-destructive testing of	summer term:	work to be recorded	experimental work and use
	archaeological sites and artefacts.		in a dedicated lab	mathematical techniques to
		Resistivity	book.	display and analyse data. To be
	In the first half of the spring term	Semiconductors		successful, regardless of field or
	students cover the following:	Equipotential	There will be 2	career path, students must learn
		Diffraction	assessment windows	how to communicate their
	• DC electric circuits; resistivity.	Diffraction Grating	for work covered in	ideas effectively and now with
	Resistivity surveying	Monochromatic	the Spring term.	greater confidence in the
	X-ray imaging and diffraction	Huygens' construction	These will consist of	subject matter will be
	Diffraction and superposition.	De Broglie wavelength	exam style question	encourage to present their
	Electron microscopy.	Thermionic emission	papers and carried	finding to a wider audience.
	Photoelectric effect.		out under exam	
		Vocabulary and	conditions.	
	A study of the physics associated	concepts encountered		
	with spare-part surgery for joint	in the Second half of the	There will be a final	
	replacements and lens implant. Also,	Autumn term:	mock examination	
	a look at how large-scale material		during this term.	
	properties can be related to small	Mechanical Properties		
	scale structures ultrasound scanning.	Tensile stress	There are Weekly	
		Breaking stress	assignments.	
	In the second half in the summer	Young modulus		
	term students cover the following:	Energy density	There will be Quick	
		Hysteresis	fire Q&A sessions.	
	Structure and properties of	Converging		
	materials.	Diverging	There will be Card	
	Doppler effect.	Dioptre	sorting activities.	
	Reflection, refraction, lenses.	Virtual image		
	ultrasound imaging.	Thin lens equation		

lens implants and the optical system of the eye	Magnification Ultrasound. Students will read the associated course text book and be sign posted to an assortment of online and other appropriately sourced reading material.	There will be Interactive white board activities.	
---	--	---	--

Learning Cycle Year 2	Knowledge and Skills	Vocabulary & Reading	Checking of understanding	Rationale
Autumn Term	 Students start their year 13 studies by looking at the application of physics in our modern rail transportation system with an emphasis on safety and control. In the first half of the autumn term students cover the following: DC circuits and switching. Force, momentum, work and energy. Magnetic fields: electromagnetic force 	Vocabulary and concepts encountered in the first half of the Autumn term: Momentum Magnetic flux density Flemings Left hand Rule Eddy currents Induced current Flux Linkage Faradays Law Lenz's Law Capacitance	Students will complete 2 assessed core practicals. All work to be recorded in a dedicated lab book. There will be 2 assessment windows for work covered in the Autumn term. These will consist of exam style question papers and carried	The autumn term starts with students consolidating their understanding of basic circuit principles and the mechanics of motion learnt in year 12. Ideas encountered in their study of GCSE Physics also provides an excellent avenue in which to learn more about electromagnetism, electric motors and the
	 Electromagnetic induction. Capacitors: exponential discharge. 	Vocabulary and concepts encountered	out under exam conditions.	laws of electromagnetism. Students will investigate

	Later students see how physics is	in the second half of the	There will also be a	circuits containing
	used in the context of aircraft. They	Autumn term:	mock examination at	capacitors and revisit
	learn about modern communication		the start of this year.	concepts of momentum
	and display techniques: transmission	Exponentials		and energy
	of signals, CCD imaging, cathode-	Attenuation	There are Weekly	conservation. There will
	ray tube, LCD and LED displays.	Electric Fields	assignments.	be opportunities to
		Electric Potentials		complete a wide range
	In the second half of the autumn	Equipotential	There will be Quick	of practical activities,
	term students cover the following:	r.m.s Voltage and	fire Q&A sessions.	many of which will have
		current		an electrical basis. This
	Capacitors: energy.	Thermionic emission	There will be Card	will allow our students to
	Fibre optics: exponential		sorting activities.	learn much more about
	attenuation.			the physics of charge,
	Uniform electric field.		There will be	voltage and
	Charged particles in a magnetic		Interactive white	capacitance and the
	field.		board activities.	role these play in
				cathode ray tubes, light
				emiffing diodes and
				plasma displays.
Spring	The Spring term introduces the area	Vocabulary and	Students will	Students really enjoy the
Ierm	of fundamental physics that is the	concepts encountered	complete 5 assessed	spring term content as
	subject of current research. This	In the first half of the	core practicals. All	they learn about the
	involves the acceleration and	spring term:	work to be recorded	discovery of fundamental
	detection of high-energy particles		In a dedicated lab	particles and the role of
		Grand United theory	DOOK.	at CENL Studenteese
	In the first half of the spring term	Appibilation reactions	Thoro will be 2	of particles to probe
	students cover the following:	Conservation Laws		matter and how
		Rest-mass energy	for work covered in	
	• Alpha scattering: nuclear model of	Angular displacement	the Spring term	magnetic forces are
	atom	Centrinetal acceleration	These will consist of	used to maintain circular
			exam style auestion	motion We revisit
			example question	

Г			· · ·	
	 Electrostatic force between point charges. Collisions: momentum and energy. Motion in a circle. Mass-energy interconversion. Charged particles in electric and magnetic fields. The quark-lepton model. Later in the spring term students explore building design and how these can withstand earthquake damage. vibration isolation and sound-proofing. In the second half of the spring term students cover the following: Simple harmonic motion. Forced vibrations Resonance and damping Waves in solids; Refraction Mechanical properties of solids. 	Vocabulary and concepts encountered in the Second half of the Spring term: Richter & Mercalli scale Free oscillation Natural frequency Resonance Harmonic motion Angular Frequency Damping Specific heat capacity Specific latent heat of vaporisation	papers and carried out under exam conditions. There are Weekly assignments. There will be Quick fire Q&A sessions. There will be Card sorting activities. There will be Interactive white board activities.	conservation laws and forces in the analysis of particle collisions in 2 dimensions. Later in the spring term we look at simple harmonic motion. This motion underlies most studies of waves and students will use mathematics to make predictions about the behaviour of oscillating systems. Before encountering more difficult concepts in the summer term, students are introduced to ideas about heat transfer and methods of insulation.
Summer Term	This unit focuses on the physical interpretation of observations, and on the formation and evolution of stars. In the first half of the summer term students cover the following:		Students will complete 1 assessed core practical. All work to be recorded in a dedicated lab book.	The final term sees our students bring together their mathematical and problem-solving skills to learn about the more challenging concepts that advanced level physics has to offer. Simple harmonic motion,

Inverse-square law for radiation.	There are V	Veekly radioactivity, Universal
 Universal gravitation; gravitational 	assignmen	ts. Gravitation, kinetic
field.		theory of gasses, black
 Energy conservation: gravitational, 	There will b	e Quick body radiation and the
kinetic. Motion in a circle.	fire Q&A se	essions. expansion of the universe
 Nuclear fusion, fission and 		are all covered and give
radioactive decay. Molecular	There will b	e Card our students a rich and
kinetic theory	sorting acti	vities. diverse understanding of
		the universe and our
	There will b	e place within it.
	Interactive	white
	board acti	vities.