

Learning Cycle Year 1	Knowledge and Skills	Vocabulary & Reading	Checking of understanding	Rationale
Autumn	Pure - Algebra and Functions	Surd	Throughout the year there	We will teach this section first,
Term	 Algebraic Expressions – basic manipulation 	Rational or Irrational	will be	since these skills are
	with indices and surds; • Quadratic Functions –	number		fundamental to the students'
	factorising, solving, graphs and discriminants;	Rationalising the	Weekly homework from	ability to progress with the
	• Linear and quadratic simultaneous equations;	denominator	both teachers – by	course. These components
	 Linear and quadratic inequalities; 	Index; Indices; Base	topic and mixed	and basic skills form the
	 Cubic, quartic and reciprocal graphs; 	Discriminant	questions including	foundations of knowledge for
	Transformations of graphs – f(x) notation.	Real roots/solutions	problem-solving. Self-	the remainder of the course.
		Repeated root	assessment using	We also see a link with Key
	Pure - Coordinate Geometry in the (x, y) plane	Completing the Square	purple pen.	Stage 4, since the topics
	 Straight Line Graphs. 	Mathematical Modelling	Classroom strategies	under scrutiny in the first term
		Inequality	will include:	will have been encountered
	Statistics - Data Representation	Graphs; Axes; Asymptote	Question and Answer,	previously by the students at
	 Interpret diagrams for single-variable data. 	Cubic; Quartic and	both open questioning	GCSE. The mathematical skills
		Reciprocal graphs	and closed	developed in this first term
	Mechanics - Quantities and Units in Mechanics		questioning,	reference previous work
	Introduction to mathematical modelling and	Gradient	differentiated as	therefore, thus enabling the
	standard S.I. units of length, time and mass;	Y-intercept	appropriate	students to commence the
	 Definitions of force, velocity, speed, 	Parallel and Perpendicular	Use of mini-	A-level course with some
	acceleration and weight and displacement;	Linear model	whiteboards to aid Q	confidence.
	 Vector and scalar quantities 		and A	These considerations are
		Model	Teacher scrutiny of	applicable to both the Pure
	Pure - Trigonometry	Particle; Rod; Uniform Body	work and exercises,	Mathematics and Statistics
	 Sine rule Cosine rule and Area of a triangle 	Light Object; Inextensible	performed in real time.	that are to be taught at this
		String; Smooth Surface	 Folder scrutiny 	stage.
	Statistics - Statistical Sampling and Measures of	Smooth and Light Pulley		
	location and spread	Bead; Air resistance;	Diagnostic Test in Week 1	The Mechanics work will also
	Measures of central tendency, other location	Gravity;		build upon GCSE knowledge
	and spread;			in Science and complement

Loi	ng Term Plan: Maths			
	• Coding	Force; weight; Normal reaction; Friction; Thrust	Concept and skill check opportunities (Integral	contemporaneous work done in A-level Physics, which
	Statistics - Correlation and Regression	Compression	Maths): Pure	many of our students take as well.
	Mechanics - Kinematics continued • Motion in a straight line under constant	Measures of Location and Spread; Central Tendency Quartiles; Outliers	S1 – Surds S2 – Indices Q1 – Quadratic graphs and	The selection of Pure Mathematics, interweaved
	acceleration; SUVAT formulae; Vertical motion under gravity.	Standard deviation; Variance Interpolation Interpercentile range Coding	equations Q2 – The quadratic formulae C1 – Points and straight lines	with Statistics and Mechanics throughout this term is to give the students a flavour of the whole course and the various concepts and skills which will
	Pure AS - Vectors	<u> </u>	E1 – Simultaneous	be required for the different
	 Definitions, magnitude/direction, addition and scalar multiplication 	Displacement – Distance Velocity – Speed Acceleration/Deceleration	equations E2 – Inequalities T3 – Sine and Cosine rules	strands. It is also to ensure that the importance of all aspects of the course is
	Pure - Proof • Proof by Exhaustion	Gradient; Rate of Change Kinematics formulae	Mechanics K1 – Displacement and	emphasised at the outset.
	 Algebraic Proof/Deduction Disproof by Counter-example 	(SUVAT); Time of flight Speed of Projection	distance K2 - Speed and velocity	The teaching of Correlation and Regression gives the opportunity to analyse a
		Vector and Scalar quantity Magnitude; direction	Summative tests TEST 1 to include: • Algebra/Surds/Indices • Quadratics	large data set using sampling techniques and the use of spreadsheets.
		Proof Statement/Conjecture Identity Deduction; Exhaustion	 Coordinate Geometry Simultaneous Equations TEST 2 to include: Descriptive Statistics 	The introduction of Vectors will inform this aspect of the Pure course as well as providing an introduction for
		Counter-example Rigour	 Modelling in Mechanics Constant Acceleration 	the vectors which will be encountered in Mechanics and for Further Mathematics
			 Correlation and Regression Trigonometry Recall from T1 	students to more readily access the vectors section of the course (later in Year 12).
				The concept of Proof is crucial to a genuine

LO	ng term Plan: Maths	1	I	7
				understanding of the purpose of Mathematics and links to our intent.
Spring Term	 Pure - Differentiation Gradients of curves Differentiating xⁿ and functions with two or more terms Gradients, Tangents and Normals Pure - Graph Sketching Points of Intersection 	Translation; Vector; Vertical or Horizontal;	Concept and skill check opportunities (Integral Maths): Pure V1 – Working with vectors G1 – Graph sketching I1 – Introduction to Integration	Differentiation occurs at both ends of this term; separated to allow some of the new concepts to embed and allow for recall towards the end of the term. Graph Sketching – Points of
	 Transforming Graphs by translation, reflection and stretching Transforming Functions 	Stretch; Scale Factor; Reflection Function notation	B1 – Binomial Expansion P1 – Polynomial functions and graphs	Intersection allows for recall and to give meaning to simultaneous equations introduced in term 1.
	Statistics - Probability		C1 – Points and straight lines	
	 Calculating Probabilities Venn Diagrams and Tree Diagrams Mutually exclusive and independent events Statistics – Histograms and Cumulative Frequency Cumulative frequency diagrams Histograms 	Experiment; Outcome; Event; Sample Space; Venn Diagram; Tree Diagram Mutually exclusive and independent events	D1 – Differentiation Statistics D1 – Collecting data D2 – Single variable data D3 – Bivariate data P1 – Working with probability B1 – The Binomial Distribution	A good understanding of Probability is fundamental for a good understanding of much of the subsequent statistics course and is an interesting topic in itself. Histograms and Cumulative frequency are graphical
	Pure – Binomial Expansion • Pascal's Triangle • Factorial Notation • The Binomial Expansion • Problem Solving and Estimation	Frequency density	Mechanics K3 – Constant acceleration formulae Summative tests	representations of single- variable data, which builds upon knowledge gained at GCSE.
	Pure – Indefinite Integration • Indefinite Integrals • Finding Functions Statistics – Discrete Distributions	Factorial Binomial Integration (Indefinite) Constant	 TEST 3 to include: Differentiation Vectors Probability Graph Sketching Binomial Expansion 	Both the Binomial Expansion and Algebraic Methods topics studied this term are nice algebraic topics, good for improving algebraic skills and problem-solving. The
	 Probability distributions Binomial distribution 	Considin	 Binomial Expansion Indefinite Integration Recall from T1 and T2 	Binomial Expansion points

Lc	ong Term Plan: Maths			
	Pure – Algebraic Methods Algebraic fractions Dividing Polynomials Factor Theorem Mechanics – Forces and Newton's Laws Force diagrams Forces as Vectors Forces and Acceleration Motion in 2-dimensions Connected particles and Pulleys Pure - Differentiation Increasing and Decreasing functions 2 nd order derivatives Stationary points Modelling with differentiation	Probability distribution Random variable; Discrete Probability (mass) function Uniform distributionDenominator; Numerator Polynomial Factor; SolutionResultant force: F=ma (Newton's 2 nd law) Weight vs Mass Scale pan; Smooth pulley Newton's 1 st and 3 rd lawsIncreasing and decreasing functions 1 st and 2 nd derivative Stationary point; Turning point; (local) Maximum;Minimum: Rate of Change; Point of Inflection	TEST 4 to include: Discrete distributions Binomial Distribution Forces and Newton's Laws Factor Theorem Further Differentiation Recall from T1, T2, T3	towards a development of this topic in year 13. Integration has been separated into two sections, to allow time for consolidation and embedding of the key ideas prior to definite integration to be taught later (during term 3). Work with indices (term 1) and differentiation (term 2) are pre-requisites for this aspect of the course. Discrete probability distributions will inform understanding of continuous distributions (the Normal distribution in year 13). The Binomial distribution resides in the curriculum at this juncture, since pre-requisite knowledge is the Binomial Expansion (above). The Forces mechanics topic builds upon concepts and skills developed during term 1 and utilizes skills learned previously in Vectors (term 1)
Summer Term	 Statistics – Hypothesis Testing One and Two tailed tests for a Binomial Distribution Finding critical values and critical regions 	Null Hypothesis; Alternative hypothesis; Population parameter; Test statistic Significance level; Actual significance level; Critical value and Critical region	Concept and skill check opportunities (Integral Maths): Pure P2 – Dividing and factorising polynomials	Several of the components of the course learned in the summer term are beginning to be quite challenging and removed from GCSE learning; they also require a good

Lo	ng Term Plan: Maths			
	Pure - Circles		D2 – Maximum and	breadth of knowledge and
	 Equation of a Circle 	Perpendicular bisector	minimum points	skills learned to date in the A-
	 Intersections of lines and circles 	Chord; Tangent; Normal	D3 – Differentiation:	level course, which is why we
	 Tangents, chords and normals 	Circumcentre	Extending the rule	have introduced them
		Circumcircle	12 – Area under the curve	towards the end of the
	Pure - Trigonometry		13 – Further Integration	academic year. This is
	 Solving trigonometric equations 		C2 – Circles	particularly true of
	Identities	Principal value; Identity or	Statistics	Trigonometry, Exponentials
	 Sketching trigonometric graphs 	Equation; Acute, obtuse or	H1 – Introduction to	and Logarithms and Variable
		reflex angle	hypothesis testing	Acceleration
	Pure – Definite Integration		Mechanics	
	 Definite Integrals to find areas 		F1 – Force diagrams and	Circles is taught at this stage
	 Areas between curves and lines (including 	Limits; Bounded	equilibrium	to recall Coordinate
	axes)	Fundamental theorem of	F2 – Newton's 2 nd Law	Geometry (term 1) and
	 Disproof by Counter-example 	Calculus	F3 – Connected objects	develop these skills further.
			V1 – Variable Acceleration	Also, we feel that students'
	Pure – Exponentials and Logarithms			problem-solving skills will have
	 Exponential functions including y=e^x 		Summative tests	developed sufficiently to
	 Laws of Logarithms 	Logarithm; Base; Natural	Year 12 Exam - Exam paper	make the most of this topic at
	 Logarithms and the natural logarithm 	Logarithm	to include Pure, Statistics	this latter stage.
	 Solving Equations using logarithms and 	"Logs to both sides"	and Mechanics	
	exponentials as the inverses of one another		End of year test – Recall of	Hypothesis testing is a
	 Exponential and Logarithmic modelling 		year's work	powerful tool, which gives a
	including non-linear data			good reason for studying
				Statistics. To what extent are
	Mechanics – Variable Acceleration			our empirical predictions
	 Functions of time 			true? Do we have sufficient
	 Use of Differentiation and Integration 			statistical evidence to draw
				such-and-such a conclusion?
				These are the questions
				addressed in this topic.
				Variable acceleration builds
				upon concepts introduced in
				Kinematics (term 1) and
				requires knowledge of (year
				12) Differentiation and
	L			Integration.

understanding of is is required for rogress during year understanding of netry is required for
rogress during year understanding of
understanding of
5
5
5
rogress during year
orms background
dge for the further
and other topics
e. It also builds
e work on
netry which was
wards the end of
Trigonometry s opportunity for
s opportunity tor solving.
solving.
ic and Partial
s is a good
ctory topic for year
it does not require
revious
dge, but does help
s to further build
iic is strictly

Long Term Plan: Maths			
Differentiation of the natural log function	Concave	Consolidation	their algebraic
and exponentials	Convex	Opportunities:	manipulation skills.
 Implicit Differentiation 	Point of Inflection	Integral Maths (Year 12	
Use of second order derivatives		Pure)	It is highly desirable to
		L1-3 – Exponentials and	teach Differentiation prior
Mechanics - Forces and Friction	Component of a force	Logarithms	to Integration because of
Resolving Forces	Resolving	T1-2 – Trigonometry	the Fundamental Theorem
Inclined Planes	Coefficient of Friction	P1-2 – Problem Solving	of Calculus. It is also more
• Friction	F _{max}	D4 – Further differentiation	accessible than
	Limiting Equilibrium	Revision Booklets	Integration. Another
		Coordinate Geometry	reason is that there is a lot
Pure - Vectors		Functions	of calculus in Further
 3D Coordinates and Vectors in 3D 	Unit Vectors	Descriptive Statistics and	Mathematics in Year 13, so
 Application to Mechanics 	Position vector	Sampling	FM students will benefit
Geometric Problems	Direction vector	Year 12 Mechanics	(although they would
	Coplanar/Non-coplanar		have learned some of the
Statistics - Probability		Concept and skill check	more important principles
Set Notation		opportunities (Integral	already – end of Year 12).
 Conditional Probability 	Intersection; Union	Maths):	Knowledge of
 Probability formulae 	Complement	Pure	trigonometry is needed,
 Venn diagrams and Tree diagrams 	Conditional Probability	F1-3 – Functions	hence the differentiation
		A2 – Rational Expressions	component being taught
Pure - Integration		A3 – Partial Fractions	after trigonometry.
 Integrating standard functions 		T1 – Working with radians	
 Integrating f(ax+b) 		TF1 – Reciprocal and	The Mechanics sections
 Integration using partial Fractions 		Inverse trig functions	have been staggered
		D2 – Chain Rule	throughout Year 13 to
		C1 – Product and Quotient	encourage recall.
		Rules	Resolving is a concept,
Statistics – Normal Distribution	Continuous random variable	Statistics	which recurs throughout
Finding Probabilities	Standard Deviation vs	P1 – Conditional	the year so is to be
Inverse normal distribution function	Variance	probability	emphasised.
• The standard normal distribution	Population parameter	D1 – Normal distribution	
• Finding μ and σ	Standardise/Standard Normal		Vectors builds upon year
	z-values		12 knowledge and informs
		Summative tests	some later Mechanics.
		TEST 1	
		Functions and graphs	

LON	j Term Plan: Maths			
			 Algebraic and partial fractions TEST 2 Forces and Friction Trigonometry Moments (easy) Differentiation Recall from T1 	Revisit, Recall and further development of knowledge of Probability. Integration is a big topic, so we feel that it would be easier for the students to learn if it is broken up into sections, requiring recall and revision of techniques throughout year 13. The Normal Distribution complements learning in other statistics learning across the curriculum – Biology in particular. It enables students to clarify the meaning of a continuous vs a discrete random variable. Problem Solving is inherent in this component.
Spring Term	Pure – Trigonometry 2 • Addition formulae • Double-angle formulae • Solving Equations and Identities • acosx ± bsinx • Modelling using trig. Pure – Numerical Methods • Location of roots • Iteration • Newton-Raphson Method	Addition formulae Double-angle formulae A numerical method vs algebraic solution Continuous function Iteration; Converge; Diverge; Cobweb diagram; staircase diagram	Consolidation Opportunities: Revision Booklets Differentiation 1 Exponential and Logs Arcs and Sectors Numerical Methods Trigonometry Integration 1 Probability Distributions and Hypothesis testing Binomial Expansion	Lots of problem-solving opportunity in trigonometry. The separation from the previous work on trigonometry in term 1 and previously, in year 12 allows for the recall and consolidation of concepts. The idea of a numerical method to find solutions to equations stands in opposition to the idea of finding solutions

ng Term Plan: Maths			
Statistics – Regression and Correlation		Concept and skill check	algebraically. It is worth
Exponential models	Extrapolation	opportunities (Integral	emphasising this point.
Measuring correlation	Product moment correlation	Maths):	There are some links to
Hypothesis testing for zero correlation	coefficient	Pure	calculus and
	Sample vs Population	T2 – Circular measure and	differentiation and
Pure – Sequences and Series		small angles	opportunities for modelling
Geometric Series and the Sum to Infinity		S1-3 – Series	and problem solving.
Use of Sigma notation	Sequence vs Series	TI1-2 Trig Identities	-
recurrence relations	Geometric; Common ratio	FD1-3 – Further	The regression and
Increasing, Decreasing or Periodic	Divergent; Convergent	Differentiation	correlation section is well
sequences	Recurrence	11-4 - Integration	placed here, since it
	Periodic	V1 – Vectors in 3	reviews and gives further
Pure – Integration		dimensions	context to exponential
Using trigonometric identities			models and hypothesis
 Integration by parts 			testing, both encountered
Integration by Substitution		Summative tests	in the summer term of year
Reverse chain rule		TEST 3 - Mock Exam	12.
 Integration as the limit of a sum 		All content taught to date.	
Trapezium Rule			Sequences and Series –
			Arithmetic series has been
			self-taught during the
			Christmas holidays, so
Mechanics – Applications of Forces			some checking of this will
Modelling with Statics			take place. Sequences
 Friction and static particles 			and Series allows for
 Dynamics and inclined planes 	Smooth pulley		problem solving and
Connected particles	Hinge		modelling interpretations.
Static rigid bodies			
			Integration is becoming
Pure – Binomial Expansion			more complex at this point
 Expanding (1 + ax)ⁿ 	Validity		and requires good
 Expanding (a + bx)ⁿ 	Convergent		knowledge of
 Using partial fractions 			differentiation and
			trigonometry. The
Mechanics – Projectiles			Trapezium Rule will have
 Horizontal and Vertical components of 	Time of flight; Range of		been learned during the
projection	projection; Trajectory		Christmas holidays.
Projection at any angle	Horizontal component		· · · ·

.

Long Tern	Long Term Plan: Maths					
Pure • Prc • Prc	n Pian: Maths = – Proof by Contradiction pof that √2 is irrational pof of infinite primes = – Differential Equations	Vertical component Conjecture Assumption; Contradiction		The Applications of Forces and Projectiles sections conclude much of the Mechanics work covered to date. "Interleaved" as alluded to above.		
• Ra • Dif	ites of Change (Differentiation) ferential Equations (Integration) odelling with differential equations	Separate the Variables General Solution; Boundary conditions; Particular solution		The Binomial expansion offers the opportunity to reinforce good algebraic processing with some problem solving. Not too onerous to learn to provide some balance against some of the more difficult topics studied towards the end of the		
				Course. The concept of Proof is crucial to a genuine understanding of the purpose of Mathematics and links to our intent. Proof by contradiction is used a lot at university level mathematics.		
				Differential Equations is a very synoptic topic, so requires knowledge from many other aspects of the course. But it is a powerful tool for modelling situations and provides a good reason for the study of this and higher level mathematics.		

Long	g Term Plan: Maths			
Summer	Statistics – Normal Distribution 2	Continuity correction	Consolidation	The students are now
Term	Approximating a Binomial Distribution	Continuous vs Discrete	Opportunities:	familiar with the binomial
	 Hypothesis testing with the normal 	random variable	Revision Booklets	distribution and have
	distribution	Sample Mean	Harder Calculus	encountered hypothesis
		Inverse normal distribution	Parametrics	testing in two prior
	Pure – Parametric Equations		Pearson Topic Tests	contexts (Binomial
	 Parametric equations 			distribution and
	Domain and Range	Parameter	Summative tests	Correlation).
	 Using trigonometric identities 	Parametric vs Cartesian	TEST 4 – post mock content	
	 Points of intersection 	equation	Proof	Parametric equations is a
	 Modelling with parametric equations 	In Mechanics – the parameter	Binomial Expansion	largely synoptic year 13
	Differentiating parametric equations	is time	Differential Equations	topic, so is better to be
	 Integrating parametric equations 		Sequences and Series	taught at this later point in
			 Projectiles 	the course. It links to the
	Mechanics – Further Kinematics		Normal Distribution	Mechanics topics taught
	 Vectors in kinematics 			at the later stages too.
	 Vector methods with projectiles 	r as displacement		
	Variable acceleration	Variable acceleration		The Mechanics section
	 Differentiating and Integrating vectors 	Dot notation for derivatives		here is synoptic in nature,
		wrt time		so needs to be taught late
		Initial/Boundary condition		on in the course. It requires
				good knowledge of prior
				mechanics topics and in
				pure maths – calculus
				techniques.