

Learning Cycle Year 1	Knowledge and Skills	Vocabulary & Reading	Checking of understanding	Rationale
Autumn Term	 Pure – Matrices Matrix addition, subtraction and multiplication Inverse of 2 × 2 and 3 × 3 matrices Simultaneous Equations Linear transformations Pure – Complex Numbers 1 Introduction of complex numbers, 	Array; Elements; Size Square Matrix; Zero Matrix; Leading Diagonal; Identity Matrix; Order Singular/Non-singular matrix; Determinant; Transpose; Matrix of Minors Matrix of Cofactors; Rule of alternating signs; Self-	 Throughout the year there will be Weekly homework from both teachers – by topic and mixed questions including problem-solving. Self-assessment using purple pen. 	Matrices will occur at this initial point in time, since it does not require a great deal of background knowledge from Year 12 Mathematics, unlike much of the Year 12 further Mathematics curriculum (notably calculus and
	 basic manipulation Complex conjugate, division and solving polynomial equations Argand diagrams Modulus and argument Pure - Roots of polynomials 1 	inverse; Consistent/Inconsistent; Sheaf; Prism; Linear multiple Imaginary number Complex number	 Classroom strategies will include: Question and Answer, both open questioning and closed questioning, differentiated as 	trigonometry). The same is true of Complex Numbers, which can largely be taught with reference to GCSE knowledge.
	 Roots of a quadratic and cubic Formation of polynomial equations Linear Transformations of roots Decision – Graph theory Modelling with graphs Basic Terminology and special graphs Representing graphs using matrices 	Real and Imaginary part Coefficient Complex conjugation Argand diagram Modulus; Argument Principal argument Coefficient: Root:	 appropriate Use of mini- whiteboards to aid Q and A Teacher scrutiny of work and exercises, performed in real time. Folder scrutiny 	Roots of polynomials is a topic which similarly does not require a great deal of background knowledge beyond what is learned at GCSE. However Quadratic Equations is taught at the outset of year 12 in
	Statistics – Discrete random variables • Expected value and variance of X	Quadratic and Cubic Equation; Quartic	,	mathematics, which provides a good foundation for this work

and a function of X	Fauation: Reciprocal:	Concept and skill check	
Solving problems	Linear Transformation:	opportunities (Integral	Decision Mathematics is
		Maths):	included in the curriculum
Decision – Algorithms on Graphs		Core Pure	because we consider this
Kruskal's and Prim's algorithm	Graph: Network: Vertex	M1 3 8 11 3 - Matrices	area of Mathematics to
Kiuskui s unu i nin s uigonnin	Nede: Edge: Are: Weight	$MI-3 \approx II-3 = Mullices$	have many applications in
Osing Dijksing s digoninim to ling the	Node, Edge, Arc, Weight	CI-2 - Complex Numbers	the "real world" Many
shortest pain	Subgraph; Degree;	RI-2 – ROOIS OF POlynomials	The real world . Many
• Eulerian graphs and Roule inspection			
algorithm	waik; Path; Irall; Cycle;	AI-2 - Algorithms	mathematical skills; offen
	Hamiltonian cycle;	NI-3 – Networks	this should be interpreted
	Eulerian circuit;	Statistics	as understanding Decision
Pure – Series	Connected graph;	DI-2 – Discrete random	Maths skills and not simply
 Sum of natural numbers 	Directed graph; Digraph;	variables	numeracy.
 Sum of squares and cubes 	Tree; Spanning free;		Graph Theory is an
	Complete graph;	Summative tests	excellent place to start,
Statistics – Poisson Distribution 1	Isomorphic graph;	TEST 1 to include:	since it provides the
 Modelling and mean and variance 	Adjacency matrix;	 Matrices 	contrast with algebraic
 Adding Poisson distributions 	Distance matrix	Complex Numbers	mathematics, with which
		Roots of polynomials	the students are most
	Discrete Random	TEST 2 to include:	familiar.
	Variable; Expectation;	Discrete random	
	Variance	variables	Discrete Random Variables
		Graphs and Algorithms	is an accessible place to
	Minimum spanning tree;	Linear transformations	start the Statistics
	Minimum connector;	Algorithms	component of the Further
	Algorithm; Prim's and	Series	Maths course. It provides
	Kruskal's algorithms:	Recall from T1	the foundation for the
	Diikstra's algorithm		Poisson Distribution and
	j		distributions studied in Year
	Sigma notation: Natural		13 GCSE skills are all that is
	numbers		required to proceed
	Poisson distribution		Algorithms on Graphs are a
	"e": The exponential		concrete introduction to
	function: Statistical		the concept of an
	Indonondonco: "Singly"		algorithm in Docision
	Independence, singly		

				Maths. These will also be a fun and novel way of performing maths for many students. Some knowledge of the previous Decision Mathematics topic – Graph Theory - is required. Series is a challenging algebraic topic, which from this point of view is well positioned at this time; the students will have gained some confidence to engage with this topic, as well as being challenged algebraically by it.
				The Poisson distribution is separated into two sections to encourage recall. The first half of the topic is taught at this time to offer some contrast to the Pure Mathematics and Decision Maths that has been covered to date and as a reminder that Statistics is an important component of the course.
Spring Term	Pure – Vectors • Vector and Cartesian equations of a	Scalar parameter; Position	Concept and skill check	
	line and a plane	Cartesian vs Vector form	Maths).	The Vectors section covers
	Scalar product	of a line/plane; Collinear;	Core Pure	a lot of material and so

• Sco	calar product form of the equation of	Normal vector; Scalar	\$1-2 – Sequences and	takes some time. The
a pla	lane	(dot) product; Skew lines;	series	students have been
• Po	pints of Intersection	Perpendicular distance.	VR1 – Volumes of	exposed to Vectors in the
• Pe	erpendicular vector and distance		Revolution	Maths course.
• Pro	oblems involving points, lines and	Basis, Assumption,	V1-2 – Vectors	
plan	nes	Inductive and Conclusion	G1-2 – Loci	Proof by Induction is a form
		steps	Decision	of proof often seen in
Pure	e – Proof by Induction	•	L1 – Linear Programming	mathematics degrees.
• Pro	oving results about sum of a series,	Modulus-Araument form:	N1-3 – Networks	Aspects of this can be
divisi	sibility and matrices	Principal araument:	C1-2 – Critical Path Analysis	challenging, and require
		Locus/Loci: Half-line	Statistics	the students to be
Pure	e – Complex Numbers 2		DD1-2 – Discrete	algebraically competent.
• Loo	oci and reaions in the Araand	Decision variable:	distributions	Hence its inclusion at this
diaa	aram	Objective function;		stage of the academic
	č	Constraints; Feasible	Summative tests	year.
		solution; Feasible region;	TEST 3 to include:	,
Deci	cision – Linear Proarammina	Optimal solution: Vertex	Poisson Distribution	A revisit of Complex
• For	prmulating a problem	testing	 Proof by Induction 	Numbers to enable recall
• Gr	raphical methods	0	Vectors	of work covered at the
• Loo	ocatina the optimal point and	Activity network:	Complex Numbers	beainning of year 12, but
solut	itions with integer values	Precedence table:	Recall from T1 & T2	the material is
		Dependence table:	TEST 4 – AS Decision Mock	sophisticated and is
		Source node: Sink node:		appropriately included at
Deci	cision – Critical path analysis	Dummy activity:		this time when the students
• Mc	odelling a project	Forward/Backward		have had the opportunity
• Du	ummy activities	pass/scan; Critical path;		to develop mathematical
• Ea	arly and late event times	Float: Gantt chart		skills and benefit from prior
• Cri	ritical activities			knowledae: e.a. the
• Go	antt charts			Binomial Expansion (Maths).
		Null hypothesis; Alternative		
Stati	tistics – Poisson Distribution 2	hypothesis; Significance		The Decision Mathematics
• Me	ean and Variance of binomial	level; One or Two tailed:		topics – Linear
• Po	pisson as an approximation to	Critical region/ value		Programming and Critical
bino	omial	. .		Path Analysis require some
• Hy	ypothesis Testing			previous knowledge
	~			[Inequalities (Maths) and

	Pure – Volume of Revolution • around the x-axis • around the y-axis • modelling Statistics – Chi-squared tests • Testing the goodness of fit with discrete data • Using contingency tables	Radian measure Goodness of fit; Observed and Expected frequency; Degrees of freedom; Constraint/Restriction; Uniform distribution; Contingency tables		Networks (D1) respectively]. These conclude the Decision Mathematics aspects of the Year 12 course. Volume of Revolution can be addressed at this stage now, since Integration, which (knowledge of) is required has been covered in the mathematics course.
	Pure – Roots of Polynomials 2 • Roots of a quartic.			Chi-Squared is the final aspect of Statistics which needs to be covered, This requires knowledge of hypothesis testing, which has been seen previously (Poisson Distribution 2).
				Roots of Polynomials (Quartics) has been included at the end of the AS course to enable recall, but also offers depth to knowledge of this topic introduced in Term 1.
Summer	Pure – Series	Partial fractions; Method	AS FURTHER MATHS EXAM	The AS Exam takes place at
Term	• Memod of differences			material has been
	Pure – Methods of Calculus	Chain rule; Product rule;		covered.
	Rules of differentiation; chain rule,	Quotient rule; Derivative		Sories Method of
	• differentiating trigonometric functions.			Differences is an accessible
	exponentials and logarithms.			Year 13 topic. It does

Decision – Algorithms on Graphs • Planarity algorithm • Floyd's algorithm	Planar vs Non-planar graph; Hamiltonian cycle; Distance table; Route	require easy Partial Fractions to be taught (a year13 topic).
 Pure – Complex Numbers Exponential form Multiplying and dividing De Moivre's theorem 	table De Moivre's Theorem; Exponential form of a complex number; n-gon; nth roots of unity	Calculus is central to the year 13 FM course, so differentiation techniques are pre-requisite knowledge, hence the inclusion of differentiation
		here. For Decision Maths, the Planarity and Floyd's Algorithms are accessible start points for year 13.
		The Complex Numbers addressed here requires year 12 knowledge and is a good introductory topic for year 13.

Learning Cycle Year 2	Knowledge and Skills	Vocabulary & Reading	Checking of understanding	Rationale
Autumn Term	Pure - Hyperbolic Functions • Hyperbolic and Inverse hyperbolic functions • Identities and equations • Differentiation and Integration Pure - Complex Numbers • Know and use $z = re^{i\theta} = r(\cos \theta + i \sin \theta)$ • De Moivre's theorem • The nth roots of $z = re^{i\theta}$ and complex roots of unity Pure - Series continued • Higher derivatives • Maclaurin Series • Expansions of compound functions Pure - Integration • Techniques of integration (Year 2 Pure) Statistics - Geometric and Negative Binomial distributions • Properties and application • Mean and variance of each Decision - The travelling salesman problem	Sinhx, coshx, tanhx, sechx, cosechx, cothx Arsinhx, arcoshx, artanhx etc. Osborn's rule De Moivre's Theorem; Modulus-Argument form; Euler's relation; Euler's relation; Euler's Identity Higher derivatives; n th derivative; d ⁿ /dx ⁿ vs. d ⁿ y/dx ⁿ Maclaurin series, Alternating sequences; Cf. Year 13 Maths LTP Geometric distribution; Negative binomial distribution; Mean and Variance	 Throughout the year there will be Weekly homework from both teachers – by topic and mixed questions including problem-solving. Self-assessment using purple pen. Classroom strategies will include: Question and Answer, both open questioning and closed questioning, differentiated as appropriate Use of mini-whiteboards to aid Q and A Teacher scrutiny of work and exercises, performed in real time. Folder scrutiny 	Hyperbolic Functions can be introduced at the beginning of the year as the students will be familiar with the basic concepts (exponentials) from the end of year 12 maths. Identities and equations are also possible to consider at this stage. The calculus will be considered later, when the students have sufficient differentiation and Integration skills (to be taught this term). The Complex Numbers here follows on directly from the material learned in year 12. Inclusion at this stage will enable recall, but offers an appropriate level of challenge at the beginning of the year. Calculus is not required knowledge.

Classical and practical problem	Classical or Practical	Concept and skill check	For the Maclaurin Series,
 Using a minimum spanning tree; 	problem; Upper and Lower	opportunities (Integral	the required differentiation
method to find an upper and lower	bounds;	Maths):	techniques have been
bound	Trianale inequality:	Core Pure	learned at the end of vear
Nearest neighbour algorithm	Shortcut: Residual spanning	S1 – Method of differences	12. This is a relatively
6 6	tree: Nearest neighbour	C1-2 – Complex Numbers	accessible topic so
Statistics – Tests for Geometric	algorithm;	H1-2 – Hyperbolic Functions	appropriate for the first few
Distributions		Decision	weeks of the term.
Hypothesis tests for parameter p	Null and Alternative	FG1-2 – Further algorithms	
Goodness of fit test	hypotheses:	on graphs	Integration needs to be
	One and Two-tailed tests	Statistics	taught at this stage, since it
Decision – Linear Programming (Review)		FD1-2 – Further discrete	is required knowledge for
	Cf. Year 12 Further Maths	distributions	most of the remainder of
Statistics – Probability Generating		H1 – Hypothesis testing	the pure sections of the FM
Functions	Dummy variable; PGF;	C1-2 – Chi-squared tests	course. (See Year 13 Maths
 Use of Probability Generating 	Independent random	G1 – Probability Generating	LTP for details)
Functions for Negative Binomial,	variables	functions	
Geometric, Binomial and Poisson			This is an appropriate time
distributions	(No new terminology)	Summative tests	to reintroduce Statistics into
 Probability generating function of the 		TEST 1 to Include:	the course. Subsequent
sum of independent random variables		 Hyperbolic Functions 	statistics topics require
		 Differentiation 	knowledge of these two
Pure – Volume of Revolution		 Maclaurin Series 	distributions.
 Around the x-axis and y-axis 		Complex Numbers	
 Using parametrically defined curves 		TEST 2 to include:	The Travelling Salesman
 Modelling 			problem is a sophisticated
		 Recall from T1 	problem in Decision Maths.
			This is a continuation of the
			work that has been done
			to date on networks and
			network algorithms.
			Some further Statistics
			continues the interleaving
			of Statistics and Decision
			Maths with the Pure topics

to be taught. The students will now be familiar with the language and protocols of hypothesis testing. The inclusion of a Linear Programming review is as a prelude to the Simplex Algorithm (term 2). This also allows for recall of year 12 material. Probability Generating Functions encourages an in depth understanding of the maths and A-level further maths Volume of Revolution problems are often given in context and provide a good oppartunity for problem solving. The required integration results and techniques are now known by the students. Parametrically defined curves will be considered later on, when this has been taught in year 13 mathematics.			
The inclusion of a Linear Programming review is as a prelude to the Simplex Algorithm (term 2). This also allows for recall of year 12 material. Probability Generating Functions encourages an in depth understanding of the mathematics behind the various distributions that are encountered in A-level maths Volume of Revolution problems are often given in context and provide a good opportunity for problems are now known by the students. Parametrically defined curves will be considered lafer on, when this has been laught in year 13 mathematics.			to be taught. The students will now be familiar with the language and protocols of hypothesis testing.
Probability Generating Functions encourages an in depth understanding of the mathematics behind the various distributions that are encountered in A-level mathsVolume of Revolution problems are often given in context and provide a good opportunity for problem solving. The required integration results and techniques are now known by the students. Parametrically defined curves will be considered later on, when this has been taught in year 13 mathematics.			The inclusion of a Linear Programming review is as a prelude to the Simplex Algorithm (term 2). This also allows for recall of year 12 material.
Volume of Revolution problems are often given in context and provide a good opportunity for problem solving. The required integration results and techniques are now known by the students. Parametrically defined curves will be considered later on, when this has been taught in year 13 mathematics.			Probability Generating Functions encourages an in depth understanding of the mathematics behind the various distributions that are encountered in A-level maths and A-level further maths
			Volume of Revolution problems are often given in context and provide a good opportunity for problem solving. The required integration results and techniques are now known by the students. Parametrically defined curves will be considered later on, when this has been taught in year 13 mathematics.

Spring Term	Decision – Simplex Algorithm	Simplex method; Slack		
	 Method and problems involving 	variables; Pivot row;	Concept and skill check	A more sophisticated
	integer solutions	Simplex tableaux; Basic	opportunities (Integral	version of Linear
	 Two-stage simplex method 	feasible solution; Basic	Maths):	Programming. It is possible
	• The Big-M method	variables, Surplus variables,	Pure	to highlight real world
		Non-basic variables;	P1-2 – Polar Coordinates	problems that can be
		Artificial variables; Two-	F1-2 – First Order Differential	solved by applying the
	Pure – Methods in Calculus	stage method; Big-M	Equations	Simplex algorithm. This is at
	 Improper integrals 	method	SD1-3 – Second Order	times better taught in a
	 Mean value of a function 		Differential Equations	"flipped" way,
	 Integrate using partial fractions 	Improper integral;	FC1-3 – Further Calculus	as each algorithm is
	 Differentiate and Integrate inverse 	Convergent; Divergent;	Decision	intricate and time-
	trigonometric functions and integrate	Infinite limit; Mean value (of	FG3 – Critical Path Analysis	consuming.
	using trigonometric substitutions	a function)	Statistics	
			L1 – Central Limit Theorem	Methods in Calculus
	Pure – Polar Coordinates	Pole; Initial line; Half-line;		continues to build upon
	 Convert between Cartesian and 	Spiral; Polar curve; Area of	Summative tests	and develop calculus
	polar and sketch r(θ)	a sector	TEST 3 - Mock Exam	knowledge and skills.
	 Area enclosed by a polar curve 		All content taught to date.	
	 Tangents to polar curves 	First-order differential		Polar coordinates is a topic
		equation; Separating the		area, which is conceptually
	Pure – Methods in Differential Equations	variables; Integrating		arresting and novel for the
	 Integrating factors to solve first order 	factor; Second-order		students. It poses an
	differential equations	differential equation;		intellectual challenge
	 Second order differential equations 	homogeneous vs non-		therefore, and is best
	 Boundary conditions 	homogeneous; Auxilliary		addressed later on in the
		equation; Complementary		course. There is also a lot of
	Statistics – Central Limit Theorem	function; Particular Integral;		pre-requisite knowledge
	 Central Limit Theorem 	General and Particular		needed, so this is quite a
	 Application to other distributions 	solutions; Boundary		synoptic area of study.
		conditions		
				Ditterential Equations do
		Central limit theorem;		require very good
		Sample mean; Distribution		integration ability; there are
		of the sample mean;		also a lot ot distinct aspects
		Population vs Sample		to this topic which need to

Pure – Modelling with Differential	Simple harmonic motion:	be remembered. Again, a
Fauations	Angular velocity: Centre of	synoptic topic suited to the
Eirst order differential equations	oscillation: Period:	end of the course
Simple harmonic motion	Amplitude: Damped	
Damped and forced harmonic	harmonic motion: Heavy	For the Central Limit
motion	dampina: Critical	Theorem a very good
Coupled first-order differential	damping; Light damping:	knowledge of all of the
equations	Damping force: Forced	statistical distributions
equalions	harmonic motion: Coupled	studied to date in maths
Statistics - Ouglity of Tests	first order differential	and further maths is
• Type L and Type II errors		needed: Binomial: Poisson:
• Size and power of test		Normal: Nogative Binomial
	Type Lorrer: Type II orrer:	and Coometric
Decision Critical Path Analysis	Actual significance level:	distributions. It sonvos as a
(continued from year 12)	Sample variance: Size of a	apped rovision and rocal
Poviov vogr 12	test: Power of a test: Power	good revision and recall
Review year 12 Posource Histograms	function of a tost	and is synaptic in pature
		and is synoptic in nature.
	Pasauraa histoaram:	Madalling with Differential
Dure Valures of Devalution	Resource histogram,	
	Levelling; scheduling;	Equations has several
 Using parametrically defined curves 	Gann Chan	vinues, real world contexts
	(No new terminology)	In biology, chemistry and
		engineering and problem-
		solving opportunities;
		synoptic in nature and the
		topic links closely to Physics,
		(otten FM students also
		study physics). This area of
		the course tollows directly
		on from differential
		equations (above).
		For a critical understanding
		of Statistics an
		appreciation of the quality
		ot statistical tests is

			important. From a career point of view, the ability to form a critical appraisal of statistics is invaluable.
			A review and conclusion of the Critical Path Analysis started in year 12. Its inclusion at this stage allows for a review and recall of a challenging topic prior to the end of the course.
			The conclusion of Volumes of Revolution. Since parametric integration has been taught in A-level maths by now, this aspect of the course can be addressed.
Summer Term	REVISION in preparation for the A-Level exams		