

Year 1	Knowledge and Skills	Vocabulary, Reading and Numeracy	Checking of understanding	Rationale
Autumn	GCSE Bridging Week: Recapping key skills	Key words: lons,	In class: Regular Q&A	The Autumns term starts recapping
Term	from GCSE that are essential to access	moles, sub-atomic	sessions, white board	some GCSE content to ensure
	the exam course	particles, isotope,	work, level of	students have the basic skills to
		ionisation, sub-shells,	independence in tasks,	succeed and give an early idea of
	Atomic Structure: Writing electronic	quantum number,	engagement, success	ability.
	configuration of atoms & ions, explaining	electron spin,	in tasks and the ability	
	trends in ionisation and explaining how a	empirical formula,	to ask probing questions	After this we complete the atomic
	TOF MS works.	standard solution,	to develop	structure & amount of substance
		concordant, burette,	understanding.	topics. Both of these link well to prior
	Key Skills: Numeracy and using key words	pipette, volumetric		knowledge from GCSE, so that
	in explanations	flask, uncertainty,	(note: the most able	students can gain confidence. They
		aliphatic, aromatic,	students ask the most	also develop key skills that
	Amount of Substance: Developing	isomerism,	questions in class but	interleave across all chemistry
	students understanding of the mole from	electrophile,	their questions are	topics. Both topics also contain
	GCSE of the mole and using in a variety of	nucleophile,	challenging)	some challenging maths that can
	calculations such as empirical formula,	carbocation groups,		give an early indication on which
	ideal gas equation, % yield, making a	mechanism, electron	Homework's: Regular	students may need more support in
	standard solution, titrations (inc. back	density, polarity,	HW setting including	numeracy.
	titrations) and use of Avogadro's	combustion,	monthly triple R booklets	
	constant.	desulphurisation,	(Repeat, revisit, recall)	As the previous topics incorporate a
		enthalpy, activation	containing past paper	lot of numeracy skills, we next
	Key skills: Numeracy and precise working	energy,	questions over	compete a significant organic topic
	in practical experiments, managing		previously learnt	as it requires completely different
	uncertainty and using volumetric	Reading: Relevant	content.	skills enabling a wider range of
	glassware	chapters of course		students to succeed. The skills
	Introduction to Organic Chansister	textbook and at least	Assessments: Typically,	introduced in this topic will be
	Introduction to Organic Chemistry,	2 articles published	4 a term containing	reviewed at the start of every
	alkanes & alkenes: Functional groups,	on teams to show	past paper questions on	organic topic across Yr12 & Yr13.
	IUPAC naming, different formulas	how chemistry relates to the wider world	recently learnt content and one 'look back in	The final tonic in Vr12 is the
	(structural, displayed & skeletal), structural isomers, E&Z stereoisomers, CIP priority,			The final topic in Yr13 is the
		(chemistry in the news: nanoscale to	anger' question from an older topic. On average	energetics topic. This again links well to GCSE but helps develop logical
	environmental chemistry, cracking,	macroscale)	there will be 2 CPACs	thought processes. Hess's Law also
			ITIELE WIII DE 2 CEACS	mought processes. Hess s law also

addition polymers & electrophilic		(required practical's) a	gives opportunity for significant
addition.	Numeracy: Using	term. Each CPAC will	challenge for the most able
Key skills: Drawing skeletal formula, naming compounds, logical thinking, using molymods, organic mechanisms.	algebra, converting units, ratios, using standard form and sketching energy	target a different range of skills including: following written instructions, risk	students
Energetics: Enthalpy changes, Hess's Law, calorimetry practical, mean bond energies.	level diagrams	assessing, using scientific equipment, selecting appropriate equipment, recording data accurately, using	
Key skills: Numeracy, logical thinking, accuracy, controlling heat loss in practical, understanding key terms in definitions, deducing chemical equations.		appropriate units, significant figures, drawing graphs, processing data and researching information.	

Spring Term	Bonding: Recap of GCSE	Key words: Cations,	In class: Regular Q&A	Before continuing with the more
	explanations of the 3 main types of	anions, electrostatic	sessions, white board	complex organic functional groups,
	bonding, crystal lattices,	attraction, crystal	work, level of	it is important that students
	electronegativity and shapes of	lattice, dative	independence in tasks,	understand intermolecular forces
	molecules.	covalent,	engagement, success	from the bonding topic in order to
		delocalised, trigonal	in tasks and the ability	discuss physical properties. It is
	Key skills: Using key words in	planar, tetrahedral,	to ask probing questions	important to review students
	explanations, thinking in 3D, drawing	trigonal pyramidal,	to develop	terminology from GCSE as often
	in 3D and logic skills	trigonal bipyramidal,	understanding.	non-specialist teachers give the
		octahedral, lone		students non mark scheme based
	Kinetics & Equilibrium: Recap	pair, bonding pair,	(note: the most able	key words. This needs to be clear
	collision theory from GCSE, the	repulsion,	students ask the most	before starting any inorganic
	Boltzmann Distribution, measuring	electronegativity,	questions in class but	chemistry
	rate experimentally, Le Chatelier's	polar, induced, Van	their questions are	
	Principle, the equilibrium constant	der Waals', H	challenging)	Next comes equilibrium which is a
	Kc.	bonding, activation		vitally important topic for the
		energy, catalyst,	Homework's: Regular	success of Year 13. It is important
	Key skills: Using graphs, practical skills,	dynamic equilibrium,	HW setting including	that this topic is done thoroughly so
	managing uncertainty, numeracy,	compromise,	monthly triple R booklets	there are no misconceptions hence
	logical thinking.	homogeneous,	(Repeat, revisit, recall)	this topic may be extended
		reduction, oxidation,	containing past paper	depending on the needs of the
	Halogenoalkanes, Alcohols &	agents, solubility,	questions over	students.
	Organic Analysis: Physical &	precipitation,	previously learnt	
	chemical properties of	disproportionation,	content.	Ensure the strands of chemistry are
	halogenoalkanes & alcohols, free	free radicals,		blended, the final topic of the term
	radical substitution, nucleophilic	electronegativity,	Assessments: Typically,	is a large organic topic. This gives a
	substitution, base & acid catalysed	photochemical	4 a term containing	chance to revisit some core organic
	elimination, oxidation of alcohols,	dissociation, chain-	past paper questions on	skills after a suitable gap. This is 3
	reflux/distillation practical, IR	reaction,	recently learnt content	topics merged together as there is a
	spectroscopy.	nucleophile, acid	and one 'look back in	lot of linked content and it is
		catalyst, base,	anger' question from an	recommended that students study
	Key skills: Drawing skeletal formula,	cyanide, concurrent,	older topic. On average	a lot of the organic content
	naming compounds, logical thinking,	reflux, distillation,	there will be 2 CPACs	together due to the synoptic nature
	using molymods, organic	carbonyl, aldehyde,	(required practical's) a	of the organic chemistry.
	mechanisms, thinking in 3D, practical	ketone, carboxylic	term. Each CPAC will	

	skills, drawing scientific diagrams, using quick fit apparatus.	acid, fermentation, carbon-neutral, spectroscopy. Reading: Relevant chapters of course textbook and at least 2 articles published on teams to show how chemistry relates to the wider world (chemistry in the news: nanoscale to macroscale) Numeracy: Using algebra, deducing units, ratios, using standard form and	target a different range of skills including: following written instructions, risk assessing, using scientific equipment, selecting appropriate equipment, recording data accurately, using appropriate units, significant figures, drawing graphs, processing data and researching information.	
Summer Term	Redox: Oxidation states, half	interpreting graphs Key words:	In class: Regular Q&A	Before covering Inorganic it is vital
	equations and redox reactions.	Reduction, oxidation,	sessions, white board	to complete the redox topic.
	Key skills: Practical skills, using charts, logic, using charge,.	agents, solubility, precipitation, disproportionation, free radical, catalyst,	work, level of independence in tasks, engagement, success in tasks and the ability	Although the content is minimal in this topic, the redox skills are important and often students need to go through redox several times
	Inorganic Chemistry 1: Trends in: atomic radii, ionisation energy and melting point across a period and group 2. The reactions of group 2 and 7 elements, destruction of the ozone layer, tests for cations &	ozone. Reading: Relevant chapters of course textbook and at least 2 articles published	to ask probing questions to develop understanding. (note: the most able students ask the most	and don't feel secure in their knowledge until Yr13. As the next topic is inorganic, these skills can be practice regularly over a period of weeks.
	anions.	on teams to show how chemistry relates to the wider world	questions in class but their questions are challenging)	The final topic in Year 12 is an inorganic topic. The reason for this is that inorganic is predominantly

Key skills: Practical skills, recalling information, deducing chemical equations, logic, using charge and using fume cupboards.Revision for end of summer Year 12 assessment: Depending on time and the needs of the student some targeted revision lessons will consolidate understanding and develop exam skills.	(chemistry in the news: nanoscale to macroscale) Numeracy: Interpreting and explaining graphs	Homework's: Regular HW setting including monthly triple R booklets (Repeat, revisit, recall) containing past paper questions over previously learnt content. Assessments: This term will include at least one end of Yr12 summer assessment. This will be a full AS exam paper (normally physical and organic) with the accurate grade boundary applied. Depending on the needs of the students a	recall and although retrieval practice is vital to success there are less new skills. New skills require practice with teacher support, whereas retrieval of recall can be done more independently and quizlet flash cards are available and regular whiteboard/internet quizzes are included to check progress and reemphasise the importance of using retrieval practices. Note: It is the intention to complete a topic from year 13. However this needs to be flexibale as timings change depending on the needs of the students. If there are a few weeks spare the thermodynamics topic will be covered, if time is limited the optical isomers topic will be covered as this is a topic that

equipment, recording data accurately, using appropriate units, significant figures, drawing graphs, processing data and researching information.
--

Year 2	Knowledge and Skills	Vocabulary, Reading and Numeracy	Checking of understanding	Rationale
Autumn Term	Thermodynamics: Recap of Hess's law	Key words: Enthalpy,	In class: Regular Q&A	Note: This is an incredibly topic
	from Yr12, thermodynamic definitions,	lattice dissociation,	sessions, white board	heavy term, which should overlap
	Born-Haber cycles, perfect ionic	atomisation, ionisation,	work, level of	with the previous and future terms
	models, enthalpy of solution, entropy	electron affinity,	independence in tasks,	depending on the needs of the
	& Gibbs free energy.	degree of covalency,	engagement, success	students. The topics chosen this
		hydration, entropy,	in tasks and the ability	term link well to the Yr12 topics and
	Key Skills: Numeracy, using definitions,	feasibility, disorder,	to ask probing	contain more skills than content
	deducing chemical equations	spontaneity, optical	questions to develop	that require practice to master,
		isomers, chiral	understanding.	hence it is important to complete
	Carbonyl Compounds: Recap of	carbons, enantiomers,		in the first Yr13 term.
	oxidation of an alcohol, optical	plane polarised light,	(note: the most able	
	isomers, aldehydes, ketones,	racemic mixture,	students ask the most	Thermodynamics continues from
	carboxylic acids derivatives and	nucleophilic attack,	questions in class but	the Yr12 energetics course hence it
	making and purifying organic liquids	substitution reactions,	their questions are	is an opportunity to consolidate
	and solids.	addition-eliminations,	challenging)	prior learning. Relating the Gibbs
		carboxyl, acid		free energy to linear graphs to
	Key skills: Drawing skeletal formula,	anhydride, acyl	Homework's: Regular	calculate entropy from the
	naming compounds, logical thinking,	chloride, esterification,	HW setting including	gradient is always an area of
	using molymods, organic	triglycerides, fatty	monthly triple R	difficulty. Later in the term in the
	mechanisms, thinking in 3D, practical	acids, trans-	booklets (Repeat,	rates topic the skill is repeated with
	skills, using quick fit apparatus,	esterification,	revisit, recall)	the more complicated Arrhenius
	drawing scientific diagrams and using	saponification,	containing past paper	equation. Repeating this skills after
	Buchner funnels (filtration under	aromatic, aliphatic,	questions over	a suitable gap on a more complex
	reduced pressure)	hydrogenation, sigma	previously learnt	example should increase fluency.
		bonds, pi bonds,	content.	
	Aromatic Chemistry: Evidence for the	delocalisation,		The Carbonyl compounds topic is
	delocalised benzene ring,	electrophile,	Assessments: Typically,	in essence 3 topics in one that
	nucleophilic substitution	acylation, nitronium	4 a term containing	relate closely. It is better to teach
		ion, diprotic acids,	past paper questions	these together as this is how they
	Key skills: Drawing skeletal formula,	dissociation,	on recently learnt	will be assessed in exams and it
	naming compounds, logical thinking,	equivalence point,	content and one 'look	improves efficiency. There are a lot
	using molymods, organic	buffer, quenching,	back in anger' question	of organic skills first introduced in
	mechanisms.		from an older topic. On	Yr12 in this topic hence it is a good

	 Acids & Bases: Recap GCSE content, Bronsted-Lowry acids, pH, weak acids, Ka, Kw buffers, titration curves practical, indicators Key skills: Numeracy, using logic, practical skills, graph plotting Rate Equations: Recap Yr12 kinetics, the rate constant, order of reaction, rate determining step, the initial rates method, the continuous method, the Arrhenius equation Key skills: Numeracy, using logic, interpreting tables of data, practical skills, graph plotting Equilibrium Constant of Homogeneous Gaseous Systems (Kp): Recap of Kc from Yr12, partial pressures and Kp Key skills: Numeracy and using logic 	mole fraction, partial pressure Reading: Relevant chapters of course textbook and at least 2 articles published on teams to show how chemistry relates to the wider world (chemistry in the news: nanoscale to macroscale) Numeracy: Algebra, graphs, linking linear equations to formula, using logarithms (natural & to the base 10), deducing units	average there will be 2 CPACs (required practical's) a term. Each CPAC will target a different range of skills including: following written instructions, risk assessing, using scientific equipment, selecting appropriate equipment, recording data accurately, using appropriate units, significant figures, drawing graphs, processing data and researching information.	opportunity to revisit these and boost fluency. The carbonyls topic also links well to amino acids & polymers taught in the Spring Term hence there is an opportunity later in the year to revisit. Aromatic chemistry is discrete topic hence can be taught at anytime providing it is before polymers. Hence this topic may be moved depending on timing. Rate equations & Kp also link well to Yr12 topics. All exams contain a large equilibrium topic hence it is a good idea to teach before the Yr13 mock exam so it can be included in the paper. The Arrhenius equation is probably the most difficult in terms of numeracy ,hence it is left till later in the term in order that numeracy skills have time to be developed
Spring Term	Electrode Potentials and Cells: Redox equilibria, electrochemical cells, feasibility of redox reactions and commercial cells. Key Skills: Numeracy, practical skills, drawing scientific apparatus and using key words in explanations.	Key words: resistance, electromotive force, cell conventions/notations, feasibility, anode, cathode, fuel cells, lone pair, quaternary ammonium salt, nucleophile, polyesters,	In class: Regular Q&A sessions, white board work, level of independence in tasks, engagement, success in tasks and the ability to ask probing questions to develop understanding.	In order to have quality revision time it is the intention to complete the course in this term. The electrode potential and cells topic will revisit redox chemistry from Yr12 and develop a much deeper understanding. Although this topic links to the electrolysis and metal reactivity topics in

A	Amines, Proteins, Polymers & DNA:	polyamides, hydrolysis,	(note: the most able	GCSE, the focus is more on redox.
В	Base strength of amines, nucleophilic	biodegradability,	students ask the most	Therefor the challenge is ensuring
S	substitution, nucleophilic addition-	zwitterion, α-helix, β-	questions in class but	students change their terminology
e	elimination, condensation polymers,	pleated sheet,	their questions are	which would have been
C	amino acids, protein structure, DNA,	stereospecific active	challenging)	acceptable in GCSE. For this
C	anti-cancer drugs	site, nucleotide,		reason GCSE recap is avoided.
		cisplatin, amphoteric	Homework's: Regular	
K	Key skills: Drawing skeletal formula,	oxide, mono-, bi- and	HW setting including	The amines, proteins & DNA links
n	naming compounds, logical thinking,	polydentate ligands,	monthly triple R	well to the carbonyl topic. It could
U	using molymods, organic mechanisms	chelate effect,	booklets (Repeat,	all be taught together however
		entropy, enthalpy,	revisit, recall)	that would entail a lengthy
	norganic Chemistry 2: Period 3	cis/trans isomerisation,	containing past paper	teaching sequence and revisiting
C	oxides, transition metals, vanadium	wavelength,	questions over	addition-elimination reactions after
	chemistry, coloured ions, redox	frequency,	previously learnt	a suitable time gap will help
ti	itrations and catalysts.	complimentary colour,	content.	cement understanding.
		absorbance, emission,		
	(ey skills: Drawing in 3D, practical skills,	excited, oxidation	Assessments: This term	The final inorganic topic requires a
	using key words in explanations,	state, homogenous,	is dominated by a large	good understanding of redox.
	recalling colours and chemical	heterogeneous,	mock exam with	Teaching this in 3 different learning
e	equations.	autocatalysis, adsorb,	potentially extra end of	episodes across the course should
		resonance,	topic assessments. On	help develop this. This topic also
	Organic Synthesis and NMR: Organic	spectroscopy,	average there will be 2	includes a lot of recall information
	synthesis, ¹ H NMR, ¹³ C NMR and	multiplets, mobile	CPACs (required	and as students will be starting to
C	chromatography.	phase, stationary	practical's) a term.	focus on revision, it is a good
		phrase, retention	Each CPAC will target	opportunity to remind them of
	Key skills: Interpreting data, thinking	factor.	a different range of	revision tools used throughout the
	ogically and using key words in		skills including: following	course.
e	explanations.	Reading: Relevant	written instructions, risk	
		chapters of course	assessing, using	The final organic topic is organic
		textbook and at least	scientific equipment,	synthesis and NMR. These topics
		2 articles published on	selecting appropriate	are quite synoptic by nature and
		teams to show how	equipment, recording	require a developed
		chemistry relates to	data accurately, using	understanding of functional
		the wider world	appropriate units,	groups. For this reason this topic is
		(chemistry in the news:	significant figures,	left till last and it also gives a good

		nanoscale to macroscale) Numeracy: graphs,	Algebra,	drawing graphs, processing data and researching information.	opportunity to go over all organic mechanisms which is vital revision for their final exam.
Summer Term	Revision: Revision will focus on areas of weakness highlighted by previous assessments and experience of areas the students struggle in. This will also include a 'walking talking mock' exam and how to build multiple choice questions.				At this point the most effective revision sessions are driven by the students. Recall quizzes will also be used to highlight areas of weakness. The multiple-choice section is often the area that students struggle with as they are very time restrictive and the answers on mark schemes do not help students understand questions.